

ASI: Atomic Simulation Interface

<u>Pavel Stishenko</u>, Benjamin Hourahine, Volker Blum, Reinhard Maurer, Scott Woodley, Andrew J Logsdail stishenkop@cardiff.ac.uk

FHI-aims Developers' and Users' Meeting 2023

August 2 – August 4, 2023

Center of Free Electron Laser Science (CFEL), Hamburg, Germany

ASI – Application Programming Interface

	 Forces Atomic charges Electrostatic potential Hamiltonian matrix Density matrix Overlap matrix Overlap matrix ASI API Atomic coordinates Electrostatic potential Initial density matrix 	7 1 1
--	---	-------------

Motivation

QM/MM

Electrostatic embedding

- ChemShell QM/MM
- Image charge augmented QM/MM (CP2K)

ASI helps to avoid proxy charges ESP representation

10.1021/acs.jctc.8b01036

10.1021/ct400698y 4

A review: 10.1039/D2CP04537K

ML models of electronic structure

- DFTB deep learning (small hydrocarbons, bulk aluminium)

A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians

Haichen Li, Christopher Collins, Matteus Tanha, Geoffrey J. Gordon, and David J. Yaron*

© Cite this: J. Chem. Theory Comput. 2018, 14, 11, 5764–5776 Publication Date: October 15, 2018 ~ https://doi.org/10.1021/acs.jctc.8b00873 Copyright © 2018 American Chemical Society

Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models

Liwei Zhang, Berk Onat, Geneviève Dusson, Adam McSloy, G. Anand, Reinhard J. Maurer, Christoph Ortner & James R. Kermode 🖂

npj Computational Materials 8, Article number: 158 (2022) | Cite this article

- SchNOrb (water, ethanol, malondialdehyde, uraci)

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

K. T. Schütt, M. Gastegger, A. Tkatchenko 🖂, K.-R. Müller 🗠 & R. J. Maurer 🖂

Nature Communications 10, Article number: 5024 (2019) Cite this article

- SA-GPR (small hydrocarbons)

Transferable Machine-Learning Model of the Electron Density

Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, David M. Wilkins, Clemence Corminboeuf, and Michele Ceriotti*

Cite this: ACS Cent. Sci. 2019, 5, 1, 57–64 Publication Date: December 26, 2018 V	Article Views	Altmetric			
https://doi.org/10.1021/acscentsci.8b00551	11048	55	140		
Copyright © 2018 American Chemical Society	LEARN ABOUT THESE METRICS				

ML models of electronic structure

- DFTB deep learning (small hydrocarbons, bulk aluminium)
 - Predicted quantity: **H**
- SchNOrb (water, ethanol, malondialdehyde, uraci)
 - Predicted quantities: H, S
- SA-GPR (small hydrocarbons)
 - Predicted quantities: $\boldsymbol{\rho}$

Core DFT algorithm

- H Hamiltonian operator
- **C** wave function expansion coefficients
- \mathbf{S} overlap matrix
- ρ electronic density

Place of electronic structure ML

Difficulties of application of electronic structure ML models

• **Huge size** of predicted data arrays (matrices, fields): 200 MB per matrix for a 100 water molecules

 Lack of efficient and convenient ways for import and export such data

API's of FHI-aims

• i-Pl

- widely adopted, ASE wrapper, MoISSI Driver Interface wrapper
- classical quantities (small data)

• Text I/O

- great ASE wrapper
- classical quantities (small data)

• File I/O (elsi_restart)

- need of conversion, synchronization
- performance is tricky
- only density matrix currently

• CFFI (by Jan Hermann)

- Python-only
- somewhat abandoned

ASI API Requirements

- 1. efficient for large data structures (high speed and low memory footprint)
- 2. easy-to-use
- 3. easy-to-implement
- 4. portable

ASI API is a plain C API

- Can be implemented efficiently
- No added complexity for deployment
- Portable
 - o Fortran iso_c_binding
 - Python ctypes, asi4py
 Julia ccall
- Compatible with
 - MPİ
 - BLAS
 - ScaLAPACK

Key functionality of ASI API

- Control flow (minimal)
- Classical MD (for convenience)
- Electrostatic potential (QM/MM)
- Kohn-Sham-Roothaan matrices (QM/ML)

Total: ~24 functions

ASI control flow functions

Minimal set for the sake of simple and noninvasive implementation void ASI_init (const char * inputpath, const char * outputfilename, int mpiComm

void ASI_run ()

void ASI_finalize ()

ASI classical MD functions

void	ASI_set_geometry (const double *coords, int n_atoms=-1, const double *lattice=0)
int	ASI_n_atoms ()
double	ASI_energy ()
const double *	ASI_forces ()
const double *	ASI_stress ()
const double *	ASI_atomic_charges (int scheme=-1)

- Repeats i-PI functionality
- For the sake of convenience

ASI electrostatic potential functions

void **ASI_calc_esp** (int n, const double *coords, double *potential, double *potential_grad)

void ASI_set_external_potential (ASI_ext_pot_func_t callback, void *aux_ptr)

void ASI_register_external_potential (ASI_ext_pot_func_t callback, void *aux_ptr)

typedef void(* ASI_ext_pot_func_t) (void *aux_ptr, int n, const double *coords, double *potential, double *potential_grad)

- Use callbacks for setting ESP
- Two ways to set ESP (like in DFTB+):
 - before SCF loop
 - during SCF loop
- For QM/MM embedding

ASI for Kohn-Sham-Roothaan matrices

typedef void(* ASI_dmhs_callback_t) (void *aux_ptr, int iK, int iS, int *blacs_descr, void *blacs_data)

void ASI_register_dm_callback (ASI_dmhs_callback_t callback, void *aux_ptr)

void ASI_register_overlap_callback (ASI_dmhs_callback_t, void *aux_ptr)

void ASI_register_hamiltonian_callback (ASI_dmhs_callback_t, void *aux_ptr)

void ASI_register_dm_init_callback (ASI_dmhs_callback_t, void *aux_ptr)

- Use callbacks for getting and setting matrices
- Use BLACS for distributed matrices
- Parallelization over ${\bf k}\mbox{-}{\rm points}$ and spin channels
- For QM/ML methods

Place of ASI in FHI-aims

Implementation details

- Part of FHI-aims set(BUILD_SHARED_LIBS ON CACHE STRING "")
- Python wrapper asi4py

Minimal C++ example

int main(int argc, char *argv[])

```
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &mpi_provided_threading); // instea
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
```

```
const MPI_Fint f_mpi_comm = MPI_Comm_c2f(MPI_COMM_WORLD);
```

```
ASI_init("control.in", "asi.log", f_mpi_comm); // read geometry.in and control.in
```

```
int n_basis = ASI_get_basis_size();
```

```
ASI_run(); // DO CALCULATIONS!
```

```
auto E = ASI_energy();
if (world_rank == 0)
std::cout << "Energy == " << E << " Ha = " << E * 27.2113845 << " eV" << std::endl;</pre>
```

```
ASI_finalize();
MPI_Finalize();
return 0;
```

Python DM export callback

```
def default saving callback(aux, iK, iS, descr, data):
  try:
    asi, storage = cast(aux, py object).value
    data = asi.scalapack.gather numpy(descr, data, (asi.n basis,asi.n basis))
    if data is not None:
      storage[(iK, iS)] = data.copy()
  except Exception as eee:
    print (f"Something happened in ASI default saving callback : {eee}\nAborting...")
    MPI.COMM WORLD.Abort(1)
storage = {}
atoms.calc = ASI ASE calculator(ASI LIB PATH, init aims, MPI.COMM WORLD, atoms)
atoms.calc.asi.register dm callback(default saving callback, (atoms.calc.asi, storage)
parprint(f'E = {atoms.get potential energy():.6f}')
DM = storage.get((1,1), None)
```

Matrices import/export

```
atoms.calc = ASI_ASE_calculator(ASI_LIB_PATH, init_aims, None, atoms)
atoms.calc.asi.keep_density_matrix = True
atoms.calc.asi.keep_hamiltonian = True
atoms.calc.asi.keep_overlap = True
atoms.calc.asi.init_density_matrix = {(1,1):predict_dm(atoms)}
```

```
parprint(f'E = {atoms.get_potential_energy():.6f}')
```

```
S = atoms.calc.asi.overlap_storage[(1,1)]
H = atoms.calc.asi.hamiltonian_storage[(1,1)]
DM = atoms.calc.asi.dm_storage.get((1,1), None)
S_cnt = atoms.calc.asi.overlap_calc_cnt[(1,1)]
H_cnt = atoms.calc.asi.hamiltonian_calc_cnt[(1,1)]
DM_cnt = atoms.calc.asi.dm_calc_cnt[(1,1)]
```

SCF acceleration via DM prediction

SchNOrb model for water

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

K. T. Schütt, M. Gastegger, A. Tkatchenko 🖂, K.-R. Müller 🗠 & R. J. Maurer 🖂

Nature Communications 10, Article number: 5024 (2019) Cite this article

Julia Westermayr

Reinhard

Maurer

Denstiy matrix in localized basis

Each row/column corresponds to a basis function localized at some atom

arctan(abs(DM)*100))

Free atom initialization

Each row/column corresponds to a basis function localized at some atom

Molecular initialization

Each row/column corresponds to a basis function localized at some atom

dm_mols =bsum.bsum(bsum.bsum(ar.data.dm**2, [44]*4, axis=0), [44]*4, axis=1)**0.5 plt.imshow(np.arctan(np.abs(dm_mols/44/44)*100)); plt.show()

SchNOrb model for water

Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

K. T. Schütt, M. Gastegger, A. Tkatchenko 🖂, K.-R. Müller 🗠 & R. J. Maurer 🖂

Nature Communications 10, Article number: 5024 (2019) Cite this article

Julia Westermayr

Reinhard

Maurer

DM stitching algorithm

Errors over SCF loop

Achieved SCF acceleration

	6	12	21	101
Single point	15.83%	13.66%	7.64%	5.56%
Dynamics	25.15%	14.92%	14.74%	3.45%

ASI availability

- FHI-aims master branch
- JOSS paper: <u>10.21105/joss.05186</u>
- ASI sources & tests: <u>https://gitlab.com/pvst/asi</u>
- Documentation: <u>https://pvst.gitlab.io/asi/</u>
- asi4py in pip: <u>https://pypi.org/project/asi4py/</u>

Acknowledgements

- Yi Yao
- Balint Aradi
- Tom Keal
- Mariana Rossi
- Julia Westermayr