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From Slater determinant to the correlated excited state
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From Slater determinant to the correlated excited state
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Why CC theory + FHI-aims?

@ FHI-aims as all-electron code :
No approx. of core electrons (no PPs or PAW ansatz)
e CCasa
reliable
systematically improvable

highly accurate
generally starting point dependence-free

framework
= Benchmarking state-of-the-art methods (e.g GOW0)

coupled-cluster theory i.a,b
(here: EOM-CCSD) J Z P Z aja,

ij,a




CCA4S - Coupled Cluster (Theory) for Solids

@ Open-source Quantum-chemistry package(!)

@ Implements continuously growing range of correlated wave
function methods(?):

MP2
CCSD/CCSD(T)
RPA(+SOSEX)
(EE/IP/EA-)EOM-CCSD
CCSD(cT)®

@ All methods available for materials and molecules

Mhttps:/ /github.com/cc4s/ccas
@https://manuals.ccds.org/user-manual /
®)Masios et al. (2023). arXiv:2303.16957v3 (under review)



CC4S - Workflow

xc hf

k_grid 4 4 4
RI_method LVL
frozen_core_postSCF @

lattice_vector 0.000 1.796 1.796
lattice_vector 1.790 0.000 1.790
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EigenEnergies.yaml CoulombVertex.yaml




CC4S - Workflow

xc hf
k-_grid 4 4 4
RI_method LVL
frozen_core_postSCF @

lattice_vector 0.000 1.790 1.790
lattice_vector 1.790 0.000 1.790
lattice_vector 1.790 1.790 0.000

atom_frac 0.000 0.000 0.000 B

atom_frac 0.750 0.750 0.750 N output ccds
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(periodic)
HF /DFT-code to
perform SCF

Hartree-Fock
calculation
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CC4S - Workflow

© Use interfaced
(periodic)
HF /DFT-code to
perform SCF
calculation

@ Interface
parses/calculates
quantities relevant for
CC4s

© and writes them to
files

lattice_vector 6.600 1.790 1.790
lattice_vector 1.790 0.600 1.790
lattice_vector 1.790 1.790 0.000

atom_frac 0.000 0.000 0.000 B
atom_frac 0.750 0.750 0.750 N

Hartree-Fock
calculation

xc hf

k_grid 4 4 4
RI_method LVL
frozen_core_postSCF @

output ccds

HF-Eigenstates

HF-Eigenenergies

RI-coefficients

kp
P

RI-Coulomb matrix

ce

A

"
vi

Coulomb vertex

T4

)

EigenEnergies.elements
EigenEnergies.yaml

CoulombVertex.elements
CoulombVertex.yaml




CC4S - Workflow

CoulombVertex.elements EigenEnergies.elements
CoulombVertex.yaml EigenEnergies.yaml
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@ CC-aims constitutes an interface between FHI-aims and CC4S
@ It has been formulated in a very general manner, so that in
principle any ab-initio code which
o utilizes a localized atomic basis set and
e employs a Resolution-of-ldentity scheme for the representation
of Coulomb integrals

can use it

o Completely open-source:
https://gitlab.com/moermani/fhi-ccés

Interface to high-performance periodic coupl theory with , localized basis functions

Moerman et al. (2022). J. Open Source Softw. 7 (74), 4040. https://doi.org/10.21105/joss.04040


https://gitlab.com/moerman1/fhi-cc4s
https://doi.org/10.21105/joss.04040

Example application : stability of boron nitride phases

Experiment:
E(c-BN) — E(r-BN) = —82 meV/ atom®)
= —57 meV/ /atom(?)
= 4 meV /atom®)

MV, L. Solozhenko (1995), High Pressure Res. 13, 199
@S, Jeong and K. Lee (2013), J. Nanosci. Nanotechnol. 13, 7766
®H. W. Day (2012), Am. Mineral. 97, 52



Example application : stability of boron nitride phases

2001

150
100
HR
oo — I
g =

-501

Ecgn — Ergn (MeV/atom)

OO > P R

Q A7 LS R

Vv X o0 < O L2
&@ 4 QQ, 5 Qfo &

My, L. Solozhenko (1995), High Pressure Res. 13, 199
S, Jeong and K. Lee (2013), J. Nanosci. Nanotechnol. 13, 7766
GH W Dav (2012) Am Mineral 07 52



Results : stability of boron nitride phases
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Results : stability of boron nitride phases
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At the same time : MgO band gap from EOM-CC
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Problem of the finite-size error of charged excitations

Indirect band gap (eV)
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Problem of the finite-size error in CC theory

Problems with this approach:
@ It is generally not obvious which extrapolation law must be
: 11
applied (N—k Ni/3,...)

@ Exceedingly expensive calculations need to be performed (>
4x4x4 k-grids)

@ The extrapolation laws don’t apply for too
small/under-converged calculations.



Structure factor-based finite-size correction

For the ground-state CC correlation energy Ecorr, the (transition)
structure factor S(G) is introduced via

Ecorr = Z (tlfja'b + t?t.lb)(zv’fl?b o V’fa) - Z V(G)S(G)
ij,ab G

@ G being a grid in reciprocal space

T

e V(G) being the Coulomb potential % in reciprocal space



Structure factor-based finite-size correction
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How to estimate the finite-size error using the transition

structure factor

@ Perform some relatively cheap (2x2x2-3x3x3) ground-state CC
calculation

o Calculate the (incomplete) transition structure factor

@ Perform quadratic interpolation to obtain missing S(G) values
near G =0

@ Re-calculate Ecorr = Y. g S(G)V/(G) to obtain finite-size
corrected correlation energy

BUT : Use of plane wave basis required !
Can we make it work for atom-centered basis functions?




AO-PW basis transformation: How well does it work?

As a measure of quality let’s look at the PW overlap SGPVZ, in the
auxiliary basis representation:

?
Seer = Cr6SuvCe = = STV=C

[l

C

[} 20 40 60 80 100 120 140

(a) R(Scler




AO-PW basis transformation: How well does it work?

Not quite well:

SG & is complex-valued

o SEW, is not diagonally dominant for short G-vectors

() R(S¢'er) (d) 3(See)



Reframing the structure factor ansatz : pair-energies

For a more efficient representation of products of states
¢5(r)gq(r), an additional auxiliary basis P,(r) is often used

¢p(r)¢q Z

Going from plane waves e/®" to the auxiliary basis P,(r):

Ecorr = Z S(G) V(G) = Ecor = Z Sllj VZ
G w

Instead of immediately summing over u and v, we can also
compute the pair-energies:

Ecorr = Z €, with e =SV,



Finite-size correction via pair-energies

Ecorr = Z 65

922 \

e P,(r— ) and P,(r — Tp,) are localized
on atoms at 7, and 7, with distance 7, — 7,

For each ¢,

@ ¢, is contribution to the total correlation energy

Interpretation of ¢,,: Distance-resolved decomposition of
correlation energy

New approach: Extrapolate ¢, to 7, — 7, — 0



Finite-size correction via pair-energies

Benefits:

@ Native, localized
basis is used

o Long-range
behavior of
correlation is
known
(for ground-state :
1/r3)

@ Very simple model

Accumulated pair energy (Ha)

—7.251

-7.301

—7.354

—7.40

—7.45+

—7.50+

—7.55+

8 10 12 14
Pair distance (Bohr)




Current post-SCF obstacles in FHI-aims

However: For an efficient finite-size correction, the treatment of
the long-range Coulomb potential needs to be consistent

Currently : Approximation of the long-range contribution to the
Coulomb potential is inconsistent between SCF and post-SCF

This has detrimental consequences for post-SCF calculations:

@ A NxNxN supercell-calculation does not yield the same result
as a NxNxN k-mesh

e Convergence to the thermodynamic limit is not always
monotone



Current post-SCF obstacles in FHI-aims

However: For an efficient finite-size correction, the treatment of
the long-range Coulomb potential needs to be consistent

Currently : Approximation of the long-range contribution to the

Work in progress:
Devise consistent scheme for post-SCF methods

@ A NxNxN supercell-calculation does not yield the same result
as a NxNxN k-mesh

@ Convergence to the thermodynamic limit is not always
monotone



Summary and outlook

What has been done:
@ Periodic and non-periodic CC calculations can be performed
with FHI-aims (via the CC-aims interface)
@ The EOM-CCSD algorithm has been implemented in Cc4s
(— available for FHI-aims and VASP)
@ A pair-energy based finite-size correction for atom-centered
basis sets has been developed

What remains to be done:
@ Fix long-range treatment of Coulomb potential for post-SCF
methods in FHI-aims
@ Benchmark pair-energy approach

e Extend functionalities of FHI-aims/CC-aims/Cc4s (natural
orbitals, non-canonical CC theory, block-sparse k-point
treatment)
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Ground-state coupled-cluster theory
~
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i,a ij,a,b

\. J

The amplitude equations <

t?-equations (¢?|e*?ltle?]<bo> =0
t,-jb-equations (¢?jb\e_?—:‘:le?—]¢>o) =0

t,-jfc—equations (¢;§-€C|e_?-lile?-|¢o> =0

\. J

CC correlation energy \

Ecorr — <¢0‘6_T":I6T’¢)0> = Z (t/'?b + tiatjb)(2vlib — Vlj?a)
ij,a,b

,
.




Excited state coupled-cluster theory
~

cC HEA/IP/EECC
WEC — REA/IP/EEyS
REA — ZraaT—i— ZrabaTaba, .. REA=(rri® ..)
i,a,b
Zr,a,+z Uaaaja, R'P:(r;,r,j’-,...)
ij,a
Zr ala; + Z abaTabaja, ... RFE= (r,-"”,r,-‘jb,...)
ij,a,b

= E\RyWEC=HR,eTdg = EyRpe’ o,
,,eATCDO = e_ATE,,fA?,,etDO

e THeT)R,®0 = E,Ryd0



Can we do the same for excited states?

Similarly, let's define the EOM structure factor S,I,P/EA(G):

EAP/EA — ZSII,P/EA(G) V(G)
G

for the n-th ionization or electron capture.

How does the structure factor for an excited state looks like?



G) of a He-atom in a 8Ax8Ax8A box
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SIP(G) of LiH (4x4x4 k-grid)
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SIP(G) of LiH (5x5x5 k-grid)
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Initial findings

PIEA(G) o |G| for small |G| (in CCSD S(G) « |G|?)
@ The finite-size error of IP/EA-EOM is proportional to N2/3

@ The correlation effects of a charged excitation have
significantly longer range than ground-state correlation effects

@ Interpolation of S,I,P/EA(G) to G = 0 is not practical



Modeling the EOM structure factor explicitly

Can we find a model to fit the EOM structure factor?

Basic requirements of model m(G):
e For small |G| (long-range) : m(|G|) x —|G]|
e For large |G| (short-range) : m(|G|) — 0
@ A minimum between both regions

In addition: By calculating (%) 60 for the linear part, we can
estimate the missing long-range contribution of S(G).

Q

a5 : , . _
(a )G:O can be approximated using the dipole matrix

dpq = <¢pw¢q>

(comparable to "head" and "wing" of the macroscopic dielec-
tric tensor routinely used in GW).




The modified Drude-Lorentz model
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The modified Drude-Lorentz model

Simply perform constrained least-square fit of S(G) using m(G)
Convergence of SF(|G|) for LiH
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Initial results with a small basis (N, /N, = 3)

Band gap convergence for LiH

12

10

Exp.: 4.9 eV (ZPR: 80 meV)

5-242  3-2 272



Basis set convergence
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Final result with converged basis
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Final result with converged basis
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The final chapter:

Coupled-cluster finite-size correction in FHI-aims

The current finite-size correction scheme (for CC and EOM-CC) is
formulated in plane waves (PW), as

e structure factor S(G) and Coulomb potential V(G) are
diagonal.

@ PWs naturally provide a space (G-space) in which
interpolation of S(G) is possible.

Problem: A localized, atom-centered basis does none of that.
Solution: Perform basis transformation before finite-size correction.



Example: Transforming the Coulomb potential

The real-space Coulomb potential ﬁ in FHI-aims is represented
using an auxiliary basis P, (r):

, (r)P (r)
G = [ arar P02
In PWs, however, one can show that the Coulomb potential is

e—iGreiG’r’ 4

T
V.6 = /dr dr’W = E5G,G'

We want to obtain an approximation of Vg g from our V,,

—iGreiG'r’ C* =P.(r C, e P,(r
VG G = /drdrli :/drdrlzll u,G M( )Zl/ ,G ( )
’ = =

=> Ci 6V Coer = ctvc



Obtaining the transformation coefficients C, ¢

As our atom-centered basis is not orthogonal, we need to take the
overlap S, = [ drP,(r)P,(r) into account.

One can show that

C,u,G = Z(Sil)u,uou,G =5

14

I
o

,where

Ous = [ drPu(ne™ = (1lG)



A finite-size correction ansatz for localized basis sets

For a more efficient representation of products of states
¢p(r)pq(r), an additional auxiliary basis P,(r) is often used

Pp(r)dg(r) Z

With such a basis introduced, the structure factor can also be
formulated using localized basis functions:

Ecorr — Z SZI/L V:
uv

=D ew
nyv



Finite-size correction via pair-energies

Ecorr = Z €uv
v

For each ¢,

e P,(r—m,) and P,(r — Tp,) are localized
on atoms at 7, and T, with distance 7, — T,

@ ¢, is contribution to the total correlation energy

Interpretation of ¢,,: Distance-resolved decomposition of
correlation energy

New approach: Extrapolate €, to 7, — 7, — 0



Finite-size correction via pair-energies

Benefits:

@ Native, localized
basis is used

o Long-range
behavior of
correlation is
known
(for ground-state :
1/r3)

@ Very simple model

Accumulated pair energy (Ha)
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Derivative-based finite-size extrapolation

Basic idea: By calculating the first derivative (% , We can
estimate the missing long-range contribution of S(

= It is not necessary to reach the minimum of S(G).
=- Smaller calculations can be sufficient to get a good estimate of

the finite-size error.

(g%)czo can be approximated using the dipole matrix

dpq = <¢pw¢q>

(comparable to "head" and "wing" of the macroscopic dielectric
tensor routinely used in GW).



Derivative-based finite-size extrapolation for LiH
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Derivative-based finite-size extrapolation for LiH

@ Decent first attempt

o But still far away from the reference band gap of ~ 5eV

A more refined treatment of the EOM structure factor is necessary



