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Why CC theory + FHI-aims?
FHI-aims as all-electron code :
No approx. of core electrons (no PPs or PAW ansatz)
CC as a

reliable
systematically improvable
highly accurate
generally starting point dependence-free

framework
⇒ Benchmarking state-of-the-art methods (e.g G0W 0)



CC4S - Coupled Cluster (Theory) for Solids

Open-source Quantum-chemistry package(1)

Implements continuously growing range of correlated wave
function methods(2):

MP2
CCSD/CCSD(T)
RPA(+SOSEX)
(EE/IP/EA-)EOM-CCSD
CCSD(cT)(3)

All methods available for materials and molecules

(1)https://github.com/cc4s/cc4s
(2)https://manuals.cc4s.org/user-manual/
(3)Masios et al. (2023). arXiv:2303.16957v3 (under review)



CC4S - Workflow

1 Use interfaced
(periodic)
HF/DFT-code to
perform SCF
calculation

lattice_vector 0.000 1.790 1.790
lattice_vector 1.790 0.000 1.790
lattice_vector 1.790 1.790 0.000

atom_frac 0.000 0.000 0.000 B
atom_frac 0.750 0.750 0.750 N

xc hf
k_grid 4 4 4
RI_method LVL
frozen_core_postSCF 0

output cc4s

Hartree-Fock
calculation

HF-Eigenenergies
εi

HF-Eigenstates
ϕkp
p

RI-coefficients
Cα

γµ

RI-Coulomb matrix
V µ
η

Coulomb vertex
Γq
rη

CoulombVertex.elements
CoulombVertex.yaml

EigenEnergies.elements
EigenEnergies.yaml
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CC4S - Workflow

CoulombVertex.elements
CoulombVertex.yaml

EigenEnergies.elements
EigenEnergies.yaml

MP2
CCSD

RPA+SOSEX

CCSD(T) EOM-CCSD



CC-aims

CC-aims constitutes an interface between FHI-aims and CC4S
It has been formulated in a very general manner, so that in
principle any ab-initio code which

utilizes a localized atomic basis set and
employs a Resolution-of-Identity scheme for the representation
of Coulomb integrals

can use it
Completely open-source:
https://gitlab.com/moerman1/fhi-cc4s

Moerman et al. (2022). J. Open Source Softw. 7 (74), 4040. https://doi.org/10.21105/joss.04040

https://gitlab.com/moerman1/fhi-cc4s
https://doi.org/10.21105/joss.04040


Example application : stability of boron nitride phases

c-BN r-BN

Experiment:

E (c-BN) − E (r-BN) = −82 meV /atom(1)

= −57 meV /atom(2)

= 4 meV /atom(3)

(1)V. L. Solozhenko (1995), High Pressure Res. 13, 199
(2)S. Jeong and K. Lee (2013), J. Nanosci. Nanotechnol. 13, 7766
(3)H. W. Day (2012), Am. Mineral. 97, 52



Example application : stability of boron nitride phases

c-BN r-BN

Experiment:
E (c-BN) − E (r-BN) = −82 meV /atom(1)

= −57 meV /atom(2)

= 4 meV /atom(3)

LD
A

PB
E+

TS
PB

E0

PB
Es

ol
SC

AN
HSE

06
B3L

YP HF

50

0

50

100

150

200

E c
BN

E r
BN

 (m
eV

/a
to

m
)

(1)V. L. Solozhenko (1995), High Pressure Res. 13, 199
(2)S. Jeong and K. Lee (2013), J. Nanosci. Nanotechnol. 13, 7766
(3)H. W. Day (2012), Am. Mineral. 97, 52



Results : stability of boron nitride phases
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Gruber and Grüneis : 14 ± 11 meV /atom (CCSD)
: 2 meV /atom (CCSD(T))



At the same time : MgO band gap from EOM-CC
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Experimental band gap : 7.77 eV
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Problem of the finite-size error of charged excitations

McClain et al. JCTC 13,3 (2017): 1209-1218



Problem of the finite-size error in CC theory

Problems with this approach:
It is generally not obvious which extrapolation law must be
applied ( 1

Nk
, 1

N1/3
k

, ...)

Exceedingly expensive calculations need to be performed (≥
4x4x4 k-grids)
The extrapolation laws don’t apply for too
small/under-converged calculations.



Structure factor-based finite-size correction

For the ground-state CC correlation energy Ecorr , the (transition)
structure factor S(G) is introduced via

Ecorr =
∑

i ,j,a,b
(tab

ij + ta
i tb

j )(2V ab
ij − V ba

ij ) =
∑
G

V (G)S(G)

G being a grid in reciprocal space
V (G) being the Coulomb potential 4π

G2 in reciprocal space



Structure factor-based finite-size correction

Liao and Grüneis JCP 145,14 (2016): 141102



How to estimate the finite-size error using the transition
structure factor

Perform some relatively cheap (2x2x2-3x3x3) ground-state CC
calculation
Calculate the (incomplete) transition structure factor
Perform quadratic interpolation to obtain missing S(G) values
near G = 0
Re-calculate Ecorr =

∑
G S(G)V (G) to obtain finite-size

corrected correlation energy

BUT : Use of plane wave basis required !
Can we make it work for atom-centered basis functions?



AO-PW basis transformation: How well does it work?

As a measure of quality let’s look at the PW overlap SPW
G,G′ in the

auxiliary basis representation:

SPW
G,G′ = C∗

µ,GSµ,νCν,G′
?= δG,G′ =⇒ SPW = C †S C

(a) ℜ(SPW
G,G′ ) (b) ℑ(SPW

G,G′ )
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Not quite well:
SPW

G,G′ is complex-valued
SPW

G,G′ is not diagonally dominant for short G-vectors



Reframing the structure factor ansatz : pair-energies

For a more efficient representation of products of states
ϕ∗

p(r)ϕq(r), an additional auxiliary basis Pµ(r) is often used

ϕ∗
p(r)ϕq(r) =

∑
µ

Cµ
p,qPµ(r)

Going from plane waves eiGr to the auxiliary basis Pµ(r):

Ecorr =
∑
G

S(G)V (G) → Ecorr =
∑
µν

Sµ
ν V ν

µ

Instead of immediately summing over µ and ν, we can also
compute the pair-energies:

Ecorr =
∑
µν

ϵµ
ν with ϵµ

ν = Sµ
ν V ν

µ



Finite-size correction via pair-energies

Ecorr =
∑
µν

ϵµ
ν

For each ϵµν :
Pµ(r − τµ) and Pν(r − τnu) are localized
on atoms at τµ and τν with distance τµ − τν

ϵµν is contribution to the total correlation energy

Interpretation of ϵµν : Distance-resolved decomposition of
correlation energy

New approach: Extrapolate ϵµν to τµ − τν → ∞



Finite-size correction via pair-energies

Benefits:
Native, localized
basis is used
Long-range
behavior of
correlation is
known
(for ground-state :
1/r3)
Very simple model



Current post-SCF obstacles in FHI-aims

However: For an efficient finite-size correction, the treatment of
the long-range Coulomb potential needs to be consistent

Currently : Approximation of the long-range contribution to the
Coulomb potential is inconsistent between SCF and post-SCF

This has detrimental consequences for post-SCF calculations:
A NxNxN supercell-calculation does not yield the same result
as a NxNxN k-mesh
Convergence to the thermodynamic limit is not always
monotone
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Currently : Approximation of the long-range contribution to the
Coulomb potential is inconsistent between SCF and post-SCF

This has detrimental consequences for post-SCF calculations:
A NxNxN supercell-calculation does not yield the same result
as a NxNxN k-mesh
Convergence to the thermodynamic limit is not always
monotone

Work in progress:
Devise consistent scheme for post-SCF methods



Summary and outlook

What has been done:
Periodic and non-periodic CC calculations can be performed
with FHI-aims (via the CC-aims interface)
The EOM-CCSD algorithm has been implemented in Cc4s
(→ available for FHI-aims and VASP)
A pair-energy based finite-size correction for atom-centered
basis sets has been developed

What remains to be done:
Fix long-range treatment of Coulomb potential for post-SCF
methods in FHI-aims
Benchmark pair-energy approach
Extend functionalities of FHI-aims/CC-aims/Cc4s (natural
orbitals, non-canonical CC theory, block-sparse k-point
treatment)





Ground-state coupled-cluster theory

ΨCC
0 = eT̂ Φ0 T̂ =

∑
i ,a

ta
i a†

aai +
∑

i ,j,a,b
tab
ij a†

aa†
bajai + ...

Exponential ansatz

ta
i -equations ⟨Φa

i |e−T̂ ĤeT̂ |Φ0⟩ = 0

tab
ij -equations ⟨Φab

ij |e−T̂ ĤeT̂ |Φ0⟩ = 0

tabc
ijk -equations ⟨Φabc

ijk |e−T̂ ĤeT̂ |Φ0⟩ = 0

The amplitude equations

Ecorr = ⟨Φ0|e−T̂ ĤeT̂ |Φ0⟩ =
∑

i ,j,a,b
(tab

ij + ta
i tb

j )(2V ab
ij − V ba

ij )

CC correlation energy



Excited state coupled-cluster theory

ΨCC
n = R̂EA/IP/EE

n ΨCC
0

R̂EA
n =

∑
a

raa†
a +

∑
i ,a,b

rab
i a†

aa†
bai + ... REA = (ra, rab

i , . . .)

R̂ IP
n =

∑
i

riai +
∑
i ,j,a

ra
ij a†

aajai + ... R IP = (ri , ra
ij , . . .)

R̂EE
n =

∑
i ,a

ra
i a†

aai +
∑

i ,j,a,b
rab
ij a†

aa†
bajai + ... REE = (ra

i , rab
ij , . . .)

Linear ansatz

ĤΨn = EnΨn⇒ĤR̂nΨCC
0 = EnR̂nΨCC

0 ⇒ĤR̂neT̂ Φ0 = EnR̂neT̂ Φ0

⇒e−T̂ ĤR̂neT̂ Φ0 = e−T̂ EnR̂neT̂ Φ0

[R̂n,T̂ ]=0⇒ (e−T̂ ĤeT̂ )R̂nΦ0 = EnR̂nΦ0



Can we do the same for excited states?

Similarly, let’s define the EOM structure factor S IP/EA
n (G):

E IP/EA
n =

∑
G

S IP/EA
n (G)V (G)

for the n-th ionization or electron capture.

How does the structure factor for an excited state looks like?



S IP
1 (G) of a He-atom in a 8Åx8Åx8Å box
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S IP
1 (G) of LiH (4x4x4 k-grid)
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S IP
1 (G) of LiH (5x5x5 k-grid)
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Initial findings

S IP/EA
n (G) ∝ |G| for small |G| (in CCSD S(G) ∝ |G|2)

The finite-size error of IP/EA-EOM is proportional to 1
N2/3

The correlation effects of a charged excitation have
significantly longer range than ground-state correlation effects

Interpolation of S IP/EA
n (G) to G = 0 is not practical



Modeling the EOM structure factor explicitly
Can we find a model to fit the EOM structure factor?

Basic requirements of model m(G):
For small |G| (long-range) : m(|G|) ∝ −|G|
For large |G| (short-range) : m(|G|) → 0
A minimum between both regions

In addition: By calculating
(

∂S
∂G

)
G=0

for the linear part, we can
estimate the missing long-range contribution of S(G).

(
∂S
∂G

)
G=0

can be approximated using the dipole matrix

dp,q = ⟨ϕp|r̂ |ϕq⟩

(comparable to "head" and "wing" of the macroscopic dielec-
tric tensor routinely used in GW).



The modified Drude-Lorentz model

m(x) := − |x | − a
(|x | − a)2 + b
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The modified Drude-Lorentz model
Simply perform constrained least-square fit of S(G) using m(G)
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Initial results with a small basis (Nv/No = 3)
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Basis set convergence
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Final result with converged basis
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Final result with converged basis
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The final chapter:
Coupled-cluster finite-size correction in FHI-aims

The current finite-size correction scheme (for CC and EOM-CC) is
formulated in plane waves (PW), as

structure factor S(G) and Coulomb potential V (G) are
diagonal.
PWs naturally provide a space (G-space) in which
interpolation of S(G) is possible.

Problem: A localized, atom-centered basis does none of that.
Solution: Perform basis transformation before finite-size correction.



Example: Transforming the Coulomb potential

The real-space Coulomb potential 1
|r−r ′| in FHI-aims is represented

using an auxiliary basis Pµ(r):

Vµ,ν =
∫

dr dr ′ Pµ(r)Pν(r ′)
|r − r ′|

In PWs, however, one can show that the Coulomb potential is

VG,G′ =
∫

dr dr ′ e−iGr eiG′r ′

|r − r ′|
= 4π

G2 δG,G′

We want to obtain an approximation of VG,G′ from our Vµ,ν :

VG,G′ =
∫

dr dr ′ e−iGr eiG′r ′

|r − r ′|
=

∫
dr dr ′

∑
µ C∗

µ,GPµ(r)
∑

ν Cν,G′Pν(r ′)
|r − r ′|

=
∑
µ,ν

C∗
µ,GVµ,νCν,G′ = C † V C



Obtaining the transformation coefficients Cµ,G

As our atom-centered basis is not orthogonal, we need to take the
overlap Sµν =

∫
drPµ(r)Pν(r) into account.

One can show that

Cµ,G =
∑

ν

(S−1)µ,νOν,G = S−1 O

,where

Oµ,G =
∫

dr Pµ(r)eiGr = ⟨µ|G⟩



A finite-size correction ansatz for localized basis sets

For a more efficient representation of products of states
ϕ∗

p(r)ϕq(r), an additional auxiliary basis Pµ(r) is often used

ϕ∗
p(r)ϕq(r) =

∑
µ

Cµ
p,qPµ(r)

With such a basis introduced, the structure factor can also be
formulated using localized basis functions:

Ecorr =
∑
µν

Sµ
ν V ν

µ

=
∑
µν

ϵµν



Finite-size correction via pair-energies

Ecorr =
∑
µν

ϵµν

For each ϵµν :
Pµ(r − τµ) and Pν(r − τnu) are localized
on atoms at τµ and τν with distance τµ − τν

ϵµν is contribution to the total correlation energy

Interpretation of ϵµν : Distance-resolved decomposition of
correlation energy

New approach: Extrapolate ϵµν to τµ − τν → ∞



Finite-size correction via pair-energies

Benefits:
Native, localized
basis is used
Long-range
behavior of
correlation is
known
(for ground-state :
1/r3)
Very simple model





Derivative-based finite-size extrapolation

Basic idea: By calculating the first derivative
(

∂S
∂G

)
G=0

, we can
estimate the missing long-range contribution of S(G).

⇒ It is not necessary to reach the minimum of S(G).

⇒ Smaller calculations can be sufficient to get a good estimate of
the finite-size error.

(
∂S
∂G

)
G=0

can be approximated using the dipole matrix

dp,q = ⟨ϕp|r̂ |ϕq⟩

(comparable to "head" and "wing" of the macroscopic dielectric
tensor routinely used in GW).



Derivative-based finite-size extrapolation for LiH
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Derivative-based finite-size extrapolation for LiH

Decent first attempt
But still far away from the reference band gap of ≈ 5 eV

A more refined treatment of the EOM structure factor is necessary


