

0 0 0 0 0

0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0

0	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0 0	0	0	0	0	0	0	0	0	0			
0	0	0	0													
0	0	0	0											-		
0	0	0	0									F	A	5	I GEOMETRY OPTIMIZATION	
0	0	0	0													
0	0	0	0)F	F LARGE-SCALE SYSTEMS	
0	0	0	0						_			_				
0	0	0	0							W		Г	Н	S	MALL NUMERICAL BASIS SETS	
0	0	0	0													
0	0	0	0													
0	0	0	0													
0	0	0	0						Ε	lis	sa	b	eth	۱K	Celler, Johannes T. Margraf and Karsten Reuter	
0	0	0	0													
				04	30.	3.2	02	23		Fŀ	-11-	-9	im	s I	Developers' and Users' Meeting 2023 Hamburg, German	V°°°°
									I							0 0 0 0
																0 0 0 0

DFT – THE WORKHORSE OF MATERIALS MODELLING

SMALL BASIS + CORRECTION IN MATERIALS MODELLING AREAS OF APPLICATIONS

- systems with hundreds of atoms speed-up molecular dynamics, geometry optimizations etc. use in composite methods
- systems with >= 1000 of atoms enable large-scale geometry optimization at DFT level

surfaces/interfaces

KS-DFT BOTTLENECK

basis-set size: converged ('tight') cubic-scaling O(N³) bottleneck

ENABLE LARGE-SCALE COMPUTATIONS WITH SMALL BASIS SET

basis-set size: converged ('tight')

increase accessible system size with:
 (1) basis-set size: 'min+s'

ENABLE LARGE-SCALE COMPUTATIONS WITH SMALL BASIS SET

basis-set size: converged ('tight')

increase accessible system size with:
 (1) basis-set size: 'min+s'
 +(2) frozen core approximation [1]

ENABLE LARGE-SCALE COMPUTATIONS WITH SMALL BASIS SET

basis-set size: converged ('tight')

increase accessible system size with:
 (1) basis-set size: 'min+s'
 +(2) frozen core approximation [1]
 +(3) 'light' grid settings

PERFORMANCE SMALL BASIS SET CsPbBr₃ WITH BASIS SET REDUCTION TO 53%

FRITZ-HABER-INSTITUT | ELISABETH KELLER Structures from Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1-24 (2014)

PERFORMANCE SMALL BASIS SET CsPbBr₃ WITH BASIS SET REDUCTION TO 53%

WHY NOT USE SMALL BASIS SETS ON A REGULAR BASIS ? SMALL BASIS SET ERROR

FRITZ-HABER-INSTITUT | ELISABETH KELLER

Structures from Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1-24 (2014), Huhn et al., Phys. Rev. Materials 1.3 (Aug. 2017)

MEASURE OF BASIS SET ERROR IN BULK SYSTEMS

MEASURE OF BASIS SET ERROR IN BULK SYSTEMS

Small basis set alters V₀, E₀, B, Bp and shape of E-V curve

MEASURE OF BASIS SET ERROR IN BULK SYSTEMS

Similarity to "tight" E-V curve with Δ-value [2]

[2] Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1-24 (2014)

CORRECTION TO RECOVER ACCURATE GEOMETRIES OBJECTIVE OF THE CORRECTION

Increase similarity between the corrected "min+s" and "tight" E-V curve

CORRECTION TO RECOVER ACCURATE GEOMETRIES CHARACTERISTICS OF THE CORRECTION

Linear correction is most minimally-invasive [3]

correct equilibrium bond lengths

intact statistical ensemble

FRITZ-HABER-INSTITUT | ELISABETH KELLER [3] Pitera et al., J. Chem. Theory Comput. 8.10 (2012)

CORRECTION TO RECOVER ACCURATE GEOMETRIES MINIMALLY INVASIVE LINEAR CORRECTION

Proposed method

E_{total} = E_{small} basis + E_{correction}

$$\begin{split} \mathsf{E}_{\text{correction}} &= \frac{1}{2}\sum_{A}^{\text{Nunit Nsuper}}\sum_{B\neq A}^{\text{Nsuper}}\mathsf{e}_{AB} \\ \mathsf{e}_{AB} &= \mathsf{s}(\mathsf{r}_{AB}\text{-}\mathsf{r}_{cut})\mathsf{f}_{switch}(\mathsf{r}_{AB},\mathsf{r}_{cut}) \end{split}$$

with correction strength s

Proposed method E-V curve

FITTING OF ELEMENT DEPENDENT CORRECTION STRENGTH S FITTING SET

FITTING OF ELEMENT DEPENDENT CORRECTION STRENGTH S FITTING SET

Energetic order given by Boltzmann factor

 $\mathsf{Bf}(\mathsf{E}_{0,i}) = e^{-rac{(\mathsf{E}_{0,i} - \min \mathsf{E}_{0,i})}{kT = 0.25 eV}}$

FITTING OF ELEMENT DEPENDENT CORRECTION STRENGTH S FITTING SET

Include energetically most stable structures

 $\mathsf{Bf}(\mathsf{E}_{0,i}) = e^{-rac{(\mathsf{E}_{0,i} - \min \mathsf{E}_{0,i})}{\mathsf{kT} = 0.25 \mathsf{eV}}} >= 10\%$

FRITZ-HABER-INSTITUT | ELISABETH KELLER

FITTING OF ELEMENT DEPENDENT CORRECTION STRENGTH S E-V CURVES WITH FITTED CORRECTION STRENGTH

Include energetically most stable structures

 $\mathsf{Bf}(\mathsf{E}_{0,i}) = e^{-rac{(\mathsf{E}_{0,i} - \min \mathsf{E}_{0,i})}{\mathsf{kT} = 0.25 \mathsf{eV}}} >= 10\%$

FRITZ-HABER-INSTITUT | ELISABETH KELLER

FITTED ELEMENT DEPENDENT CORRECTION STRENGTH S Z = 1 - 86 (EXCLUDING LANTHANIDES)

PERFORMANCE PROPOSED METHOD EQUILIBIRUM VOLUMES MONOELEMENTAL MATERIALS AND BINARY COMPOUNDS

FRITZ-HABER-INSTITUT | ELISABETH KELLER

Structures from Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1-24 (2014), Huhn et al., Phys. Rev. Materials 1.3 (Aug. 2017)

CORRECTION TO RECOVER ACCURATE GEOMETRIES TERNARY AND QUATERNARY COMPOUNDS

MOLECULAR DYNAMICS – FORCES

Cu, PBE, NPT N = 256 P = 0 eV/Å³ T = 1600K

GEOMETRY OPTIMIZATION - STRESSES

System: stretched + rattled Si(DIA) unitcell std 0.11 Angström, PBE

USE OF PROPOSED METHOD IN COMPOSITE METHODS

Nanoparticles Pt_xCu_{201-x}[8], PBE, |Fmax| <= 0.001 eV/Å³

Formation energy

[8] Initial structures from Vega, Mater. Adv. 2.20 (Oct. 2021)

STATUS SMALL BASIS DFT: PBE\"MIN+S" + CORRECTION

relative energies, forces, stresses for Z = 1-86 (excluding lanthanides)

Application areas

- systems with hundreds of atoms speed-up MD, pre-relaxations and geometry optimizations etc. use in composite methods
- systems with >= 1000 of atoms enable large-scale geometry optimization at DFT level

