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Core Level XPS
● X-ray Photoelectron Spectroscopy
● Photon in => electron out

hν
e– hν = EB + φ + Ek

Energy required 
to remove the 
electron from the 
sample

Photon 
energy Kinetic 

energy of the 
photoelectron



  

XPS: the ideal scenario

The “ESCA molecule” – four carbon 
environments, four C 1s peaks

Travnikova et al., J. Electron Spectrosc. Relat. 
Phenomena 185, 191 (2021)

Si 1s core level spectra of a SiC/SiO2 
heterostructure

Berens et al., J. Phys.: Energy 2, 035001 (2020)



  

XPS: binding energies from the literature
● HCOO on Cu(111), C 1s – 287.3 eV, 288.2 eV, 

289.75 eV
● HCOO on Cu(poly), C 1s – 287.3 eV, 288.1 eV
● CO on Cu(111), O 1s – 531.5 eV, 533.4 eV
● In contrast, shifts as small as 0.2-0.3 eV are 

sometimes used for chemical state identification



  

Calculating core electron binding energies

● Given a structural model, can we predict
– Relative core electron binding energies (shifts)?
– Absolute binding energies from first principles?

● DFT eigenvalues are a poor approximation
– No final state screening!



  

Calculating core electron binding energies

Free CO2

Physisorbed
CO2

C 1s eigenvalue 278.35 eV 278.11 eV       

C 1s calculated 297.69 eV 294.64 eV
B.E. (ΔSCF)

NB! Experimental B.E. for adsorbed CO2 would be reported relative to EF 



  

Calculating core electron binding energies

● DFT eigenvalues are a poor approximation
– May give ok results when very similar systems are 

compared, but fail badly in other situations
– Hybrid functionals, Koopmans corrected 

functionals, etc. do not address the main issue



  

Calculating core electron binding energies

● Two “real” methods to tackle the problem
– Δ-methods (explicitly calculate EN and EN–1,core hole)

– Response theory methods (GW, EOM-IP-CCSD, ...)

● Δ-methods: how to calculate final state total 
energy? Model an excited state of a charged 
radical?? CIS, TDDFT, EOM-CCSD(T)



  

Calculating core electron binding energies

● Δ-Self-Consistent-Field (ΔSCF) approach:
– EN: ground state total energy from DFT

– EN–1,core hole: 
● Enforce a non-Aufbau-principle occupancy of the Kohn-

Sham eigenstates
● Converge the self-consistent field in the presence of the 

core hole
● All other electrons are allowed to fully relax in the 

presence of the core hole



  

A simple ΔSCF calculation in FHI-aims
● O 1s in H2O – ground state calculation

        default “tight” species definitions



  

A simple ΔSCF calculation in FHI-aims
● O 1s in H2O – core hole calculation



  

A simple ΔSCF calculation in FHI-aims
● O 1s in H2O – core hole calculation



  

A simple ΔSCF calculation in FHI-aims
● Ground state Etot: -2080.96 eV
● Final state Etot: -1540.42 eV
● ΔSCF: 540.54 eV
● Expt. B.E. from gas phase XPS: 539.9 eV



  

● Simple ΔSCF calculation with default settings
– Relative binding energies (~ shifts) ✓
– Absolute binding energies ✗

● For accurate absolute core electron binding 
energies need to consider
– Basis sets
– Relativistic effects
– Functional



  

Calculating absolute core electron BE-s



  

Calculating absolute core electron BE-s
● DFT with the SCAN functional
● Scaled ZORA treatment of relativistic effects
● Basis sets that permit the relaxation of the 

remaining core and valence electrons in the 
presence of the core hole

● 2p3/2 levels – get “2p” binding energy from a 
scalar relativistic calculation, subtract 1/3 spin-
orbit splitting for 2p3/2



  

MAE = 0.16 eV for 103 binding energies from gas phase XPS
Kahk et al., Phys. Rev. Materials 3, 100801(R) (2019)

Works for 1s levels of Li...Mg, 2p3/2 levels of Na...Ar



  

ΔSCF in FHI-aims: example 2
● O 1s in H2O, with the recipe from Phys. Rev. 

Materials 3, 100801(R) (2019)



  

ΔSCF in FHI-aims: example 2
● O 1s in H2O, with the recipe from Phys. Rev. 

Materials 3, 100801(R) (2019)



  

ΔSCF in FHI-aims: example 2
● Ground state Etot: -2081.55 eV
● Final state Etot: -1541.67 eV
● ΔSCF: 539.88 eV
● Expt. B.E. from gas phase XPS: 539.9 eV



  

Example 3: O 1s in CO2

● In symmetrical molecules it is important to 
localize the core hole!



  

Example 3: O 1s in CO2

● Check Mulliken.out to verify localization of the 
core hole on the correct atom



  

Example 3: O 1s in CO2

● ΔSCF: 541.35 eV
● Expt. B.E. from gas phase XPS: 541.3 eV



  

Some practical aspects
● Wavefunction based restart files are (currently) 

required
– Cannot use ELSI-restart
– May need to specify “density_update_method orbital”
– Only serial eigensolver for periodic systems



  

Heavier elements



  

Heavier elements



  

Heavier elements



  



  

Calculating core electron binding energies

● Δ-methods vs response theory in the coupled 
cluster approximation
– Martinez et al., PCCP 24, 20728 (2022)
– ΔCCSD (much) more accurate than EOM-IP-CCSD 

for core excitations
– Expressing the relaxation of the remaining electrons 

in terms of the ground state orbitals inefficient (?)



  

Excited states from ground state DFT?
● How to prevent “variational collapse” of the SCF 

to the ground state?
– Gilbert et al., “Self-Consistent Field Calculations of 

Excited States Using the Maximum Overlap Method 
(MOM)”, J. Phys. Chem. A 112, 13164 (2008)

– Also implemented in FHI-aims (deltascf_projector, 
force_occupation_projector (legacy))



  

Excited states from ground state DFT?
● A note in the manual of DIRAC23



  

Preventing variational collapse
● The maximum overlap method sometimes fails
● Newer, more robust algorithms for preventing 

variational collapse
– Initial maximum overlap method (IMOM)
– Square gradient minimization (SGM)
– State targetted energy projection (STEP)
– …

● MOM generally sufficient for creating a core hole



  

Excited states from ground state DFT?
● The idea is not new, e.g.

– Perdew & Levy, “Extrema of the density functional for 
the energy: Excited states from the ground-state 
theory”, PRB 31, 6264 (1985)

● Modern considerations: topology of the electron 
energy landscape in orbital parametrization space
– Global minimum => electronic ground state
– Local minima or saddle points => excited states



  

ΔSCF method – general considerations
● “OO-DFT” – Hait, Head-Gordon (Q-Chem)
● Orbital-optimized Density Functional Theory for Excited 

States
– Core binding energies
– Neutral excitations (XAS)
– Core excitations in radicals
– Valence excitations, incl. doubly excited states
– … 

● PhD thesis of Diptarka Hait



  

ΔSCF method – effects of system size
● The ΔSCF approach fails for calculating the first 

ionization energies of large systems
● E.g. in solids, at the limit of infinite supercell 

size, EN, ground – EN – 1,ground converges to the 
VBM eigenvalue

EN, ground – EN – 1,ground = ϵVBM



  

VBM: ΔSCF vs eigenvalue



  

ΔSCF method – effects of system size
● Empirical evidence: core electron BE-s from 

ΔSCF method become increasingly inaccurate 
for larger molecules

● Errors > 1.0 eV reported for C 1s and O 1s 
binding energies in anthrone



  

● However, core electron BE-s from ΔSCF 
calculations do not converge towards the core 
orbital eigenvalue for large supercells!



  

ΔSCF method – bigger molecules
● Remeasured gas phase XPS of anthrone at 

FinEstBeAMS beamline at MAX-IV synchrotron
● New ΔSCF calculations: SCAN + scaled ZORA 



  

44 binding energies: mean absolute error = 0.20 eV
 (unpublished data: J.M. Kahk and M. Berholts)



  

ΔSCF calculations – periodic solids
● Experimental binding energies in solids are 

typically reported relative to the Fermi level
● For calculated values

– In metals, the Fermi level is a good point of 
reference

– In insulators, the position of the Fermi level within 
the band gap is not known a priori

– Instead, use the VBM as the point of reference



  

ΔSCF calculations – periodic solids
● EB = EN–1, core hole – EN–1, ground state

● Use a uniform compensating background charge 
in both calculations

● A localized core hole is analogous to a charged 
defect in a solid
– Converge core electron binding energy to the limit of 

infinite supercell size



  



  

The ΔSCF method: metallic solids



  

The ΔSCF method: insulating solids



  

Solid Core level Theor EB (eV) Expt EB (eV) Error (eV)

Li Li 1s 54.88 54.85  0.03

Be Be 1s 111.88 111.85  0.03

Na Na 1s 1071.56 1071.75 -0.19

Na 2p 30.65 30.51  0.14

Mg Mg 1s 1303.25 1303.24  0.01

Mg 2p 49.69 49.79 -0.10

Graphite C 1s 284.44 284.41  0.03

BeO Be 1s 110.79 110.00  0.79

O 1s 528.86 527.70  1.16

hex-BN B 1s 188.42 188.35  0.07

N 1s 396.39 396.00  0.39

Diamond C 1s 284.43 284.04  0.39

beta-SiC Si 2p 99.24 99.20  0.04

C 1s 281.48 281.55 -0.07

Si Si 2p 99.17 99.03  0.14

Mean absolute error = 0.24 eV



  

The ΔSCF method: solids
● At the limit of infinite supercell size, the total 

energy difference EN, ground – EN – 1,ground 
converges to the VBM eigenvalue

EN, ground – EN – 1,ground = ϵVBM

● This has been discussed in detail in
– Corsetti & Mostofi, Phys. Rev. B 84, 035209 (2011)
– Persson et al., Phys. Rev. B 72, 035211 (2005)



  

The ΔSCF method: solids
● We can therefore write two different equations 

for the core electron binding energy

EB = EN–1, core hole – EN–1, ground state (1)

EB = EN–1, core hole – EN, ground state + ϵVBM, ground       (2)

● At the limit of infinite supercell size, (1) and (2) 
should give the same result



  

Position of the VBM
● In Eqn. 2, the binding energy depends on the DFT 

eigenvalue at the VBM

EB = EN–1, core hole – EN, ground state + ϵVBM                    (2)

● Could we improve the accuracy of the calculated 
binding energies by obtaining ϵVBM from a more 
accurate theory, e.g. GW?

– i.e. by using ϵVBM = ϵVBM, DFT + quasiparticle 
correction



  

Core BEs with VBM corrected by G0W0Γ



  

Core BEs with VBM corrected by G0W0Γ
● MAE = 0.19 eV (vs. 0.24 eV without correction)
● Major improvements for BeO and diamond
● Dataset is too small for a definitive assessment



  

Solid Core level Theor EB (eV) Expt EB (eV) Error (eV)

Li Li 1s 54.85 54.85 0.00

Be Be 1s 112.34 111.85 0.49

Na Na 1s 1071.70 1071.75 -0.05

Na 2p 30.77 30.51 0.26

Mg Mg 1s 1303.48 1303.24 0.24

Mg 2p 49.96 49.79 0.17

Graphite C 1s 284.53 284.41 0.12

BeO Be 1s 109.54 110.00 -0.46

O 1s 527.59 527.70 -0.11

hex-BN B 1s 188.02 188.35 -0.33

N 1s 395.94 396.00 -0.06

Diamond C 1s 284.08 284.04 0.04

beta-SiC Si 2p 99.11 99.20 -0.09

C 1s 281.36 281.55 -0.19

Si Si 2p 99.36 99.03 0.33

Mean absolute error = 0.19 eV



  

What is still difficult?
● SCF-convergence!

– Sometimes the total energy converges faster than the 
change in charge density

– In FHI-aims, turn off the Kerker preconditioner

● Basis sets
– Current (numerical) basis sets for atoms with a core 

hole are accurate, but very inefficient



  

What is still difficult?
● Periodic calculations

– In FHI-aims, only KS_method serial can be currently used in 
periodic calculations with deltascf_projector (or 
force_occupation_projector)

– “Tricks” required for creating a localized core hole

● Heavier elements
– Creating core holes in p, d, or f-orbitals in scalar relativistic 

calculations is conceptually problematic
– Also bad for SCF-convergence, core hole can “hop around” 

between the degenerate orbitals



  

Other important things
● Neutral excitations => XAS
● Spin-orbit splitting in core levels – fully relativistic 

ΔSCF calculations. Restricted open-shell Kohn-
Sham (ROKS) required (?)

● All-electron schemes (~ FHI-aims) vs 
pseudopotentials with a core hole

● GW calculations of core electron binding energies 
in FHI-aims (D. Golze et al.)



  

Summary
1) Peak-assignment problems in core level XPS as 

something that seriously limits our overall ability to 
characterize complex surfaces

2) Orbital-optimized DFT for excited states, especially 
for core-excitations

3) FHI-aims as the best available code for all-electron 
ΔSCF calculations of realistic systems
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