

#### 0 0 0 0 0 0 0 0 **IMPLICIT SOLVATION IN FHI-AIMS** 0 0 0 0 0 0 0 0 0 0 0 0 Jakob Filser 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0



#### **Implicit solvation**





#### **Implicit solvation**

Free energy of solvation





#### **Implicit solvation in FHI-aims**

Smooth cavity

#### **SMPB**

#### **Environ (WIP)**

Stern layer modified Poisson-Boltzmann

Originally implicit solvation module of QuantumEspresso now independent library

Different methods, including SCCS

# Sharp cavity

#### COSMO

#### MPE

Conductor-like screening model Multipole expansion model

Equivalent model to self-consistent continuum solvation (SCCS)



Electrolytes, (PBC)







Ansatz



Harmonicity in regions of constant permittivity

$$\varepsilon(\mathbf{r} \in X) = \text{const.} \Rightarrow \nabla^2 \Phi_{\text{MPE}}(\mathbf{r} \in X) = 0$$

Series expansion in solid harmonic functions (multipoles)

$$\mathcal{R}_{m}^{l}(r,\theta,\varphi) = r^{l}Y_{m}^{l}(\theta,\varphi)$$
$$I_{m}^{l}(r,\theta,\varphi) = r^{-(l+1)}Y_{m}^{l}(\theta,\varphi)$$







# MPE-nc

FRITZ-HABER-INSTITUT | JAKOB FILSER







#### **MPE convergence**





#### **Subcavities**





#### **Subcavities**





Free energy of solvation













Boundary conditions cast into linear system





Boundary conditions cast into linear system





Matrix subblock:

Basis functions inside one subcavity (const.)

Х

Surface points of one subcavity (≈ const.)





Matrix subblocks:

Basis functions inside one subcavity (const.)

Х

Surface points of one subcavity (≈ const.)

Х

Heavy atoms (O(N))





Matrix subblocks:

Basis functions inside one subcavity (const.)

Х

Interface points between two subcavities (≈ const.)

Х

Touching pairs of heavy atoms ( $\approx O(N)$ )



MAX PLANCK GESELLSCHAFT

# A few words on scaling

Matrix subblocks:

Basis functions outside cavity per heavy atom (const.)...

Х

... for each heavy atom ( O(N) )

Х

Total cavity surface points ( $\approx O(N)$ )





Matrix subblocks:

Basis functions outside cavity per heavy atom (const.)...

Х

... for each heavy atom ( O(N) )

Х

Total cavity surface points ( $\approx O(N)$ )





Matrix subblocks:

Basis functions outside cavity per heavy atom (const.)...

Х

... for each heavy atom ( O(N) )

Х

Total cavity surface points ( $\approx O(N)$ )





# **Forces**



Derivatives of ...





# Test system: NaF dimer in $\varepsilon = 2$





# **Fixing the PES**





Derivatives of ...























#### NaF in water, with non-electrostatic contributions





#### NaF in water, with non-electrostatic contributions





#### Conclusions

- One of multiple implicit solvation models in FHI-aims
- Treat neutral, cationic and anionic solutes with same paramter set
- Fast not bottleneck compared to DFT
- Forces will soon be available



#### **Acknowledgements**

**Karsten Reuter** 

Harald Oberhofer

**Daniel Waldschmidt** 

Konstantin Jakob

Markus Sinstein

**Christoph Scheurer** 

**Sebastian Matera**