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What is random phase approximation (RPA)?

RPA plays a special role in electronic structure theory.

RPADFT

Green function theory (GW)

Quantum Chemistry methods

(Coupled Cluster Theory)

Density response function

Exchange-correlation functional

Ring diagram

• Non-local electron correlation effects are captured by RPA
• Bridges DFT, GW, and Quantum chemistry methods.



Outline

• Concept and history of random phase approximation (RPA) as 
an approach to compute correlation energy of interacting 
electrons

• Implementation, and illustrating examples of applications in 
chemistry and materials science

• Efforts of going beyond RPA to further improve its accuracy

• Recent progresses in the RPA community



Success and limitations of conventional DFT in 

computational materials science

Density functional theory (DFT) in its conventional (e.g., LDA, GGA) 
approximations is enormously successful in simulating materials’ 
properties, but has certain (intrinsic) limitations.

Typical situations: 

 Systems with mixed bonding characteristics
(e.g., mixed physisorption and chemisorptions of molecules 
on metal surfaces, organic/inorganic interfaces, energy differences
between different polymorphs)

 Systems where both ground-state energy and charge
excitation energy gap are important.

(e.g.,  point defects in wide-gap insulators, …)

 Systems with near degeneracies (“strong correlation”)
(multi-configurational in nature, e.g., bond breaking, transition states,
transition-metal oxides, f-electron systems, …)   



A zoo of electronic-structure methods

Workhorse LDA/GGAs

Deficiencies
Lack of van der Waals;
Self-interaction errors

Lack of functional derivative 
discontinuity; Insufficiency 
of KS spectrum

Consequences Inaccuracy for ground-
state energies

Inaccuracy for quasi-particle 
excitation energies

Possible fixes
MP2

RPA

CCSD(T)

DFT+U

Double hybrids

Hybrid functionals

GW DFT+DMFT

vdW-DF DFT+vdW DFT-D

DFT+G ……

SIC-DFT

meta-GGA



Hierarchy of electronic structure theories

Density and its 
gradients,

Green function

Chemical accuracy

𝑛 𝒓 , 𝛻𝑛 𝒓 , 𝜏(𝒓)

𝑜𝑐𝑐. & 𝑢𝑛𝑜𝑐𝑐 𝜓𝑛, 𝜖𝑛

e.g., Hybrids functionals, 
Density matrix functional theory

e.g., RPA, GW, MP2, 
Doubly hybrid density functionals.
Quantum chemistry methods

e.g., LDA, GGA, meta-GGA

Density matrix

D 𝒓, 𝒓′ or 𝑜𝑐𝑐. 𝜓𝑛

G 𝒓, 𝒓′, 𝜔 or 

𝐺0 𝒓, 𝒓′, 𝜔 =  

𝑛

𝜓𝑛(𝒓)𝜓𝑛
∗ (𝒓′)

𝜔 + 𝜖𝐹 − 𝜖𝑛 + 𝑖ηsgn 𝜖𝑛 − 𝜖𝐹



Early history of RPA

● Correlation energy of  homogeneous electron gas (HES):
-- Divergence problem of “order-by-order” perturbation theory

● Separation of collective modes and internal modes of motion:
-- First appearance of the RPA concept (Bohm & Pines, 1950’s)

“A Collective Description of Electron Interactions (I-IV)” -- Bohm-Pines quartet
For a review, see D. Pines, Rep. Prog. Phys. 79, 092501 (2016).

● Self-consistent field approach to HES
-- Lindhard function (Lindhard, 1954)

● RPA = “sum of ring diagrams to infinite order”
-- (Brueckner & Gell-Mann, 1957)

● The introduction of screened Coulomb interaction W
-- (Hubbard, 1957)

● The GW approximation to the self-energy  Ʃ=iGW
-- (Hedin, 1965)



The concept of RPA

We distinguish between two kinds of response of the electrons to a wave. One of 
these is in phase with the wave, so that the phase difference between the particle 
response and the wave producing it is independent of the position of the particle. 
This is the response which contributes to the organized behavior of the system. 
The other response has a phase difference with the wave producing it which 
depends on the position of the particle. Because of the general random location of 
the particles, this second response tends to average out to zero when we consider 
a large number of electrons, and we shall neglect the contributions arising from 
this. This procedure we call the “random phase approximation”. 

D. Bohm and D Pines, Phys. Rev. 82, 625 (1950).
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The adiabatic connection construction

Physical system Kohn-Sham system

 𝐻 =  𝑇 +  𝑉𝑒𝑒 +  𝑉𝑒𝑥𝑡  𝐻𝐾𝑆 =  𝑇 +  𝑉𝑎𝑢𝑥
Define a series of fictitious systems with scaled interparticle interactions:

 𝐻𝜆 =  𝑇 + 𝜆  𝑉𝑒𝑒 +  𝐻𝑒𝑥𝑡
𝜆

 𝐻𝜆=1 =  𝐻  𝐻𝜆=0 =  𝐻𝐾𝑆

The electron density 𝑛 𝑟 is kept fixed for 0 ≤ 𝜆 ≤ 1.

𝐸xc
exact =  

0

1

𝑑𝜆𝑈xc
𝜆

𝑈𝑥𝑐
𝜆 [𝑛] = Ψ0

𝜆  𝑉𝑒𝑒 Ψ0
𝜆 −

1

2
 𝑑𝒓𝑑𝒓′

𝑛 𝒓 𝑛(𝒓′)

𝒓 − 𝒓′ 𝑈𝑥𝑐
𝜆 [𝑛]



RPA as a first-principles method

 With the framework of adiabatic-connection fluctuation-dissipation 
(ACFD) theorem, RPA can be formulated as an approximate, but fully 
nonlocal exchange-correlation (XC) energy functional.

Langreth & Perdew, Phys. Rev. B 15, 2884 (1977).
Gunnarsson & Lundqvist, Phys. Rev. B 13, 4274 (1976).

𝐸xc =  
0

1

𝑑𝜆𝑈xc
𝜆 = −

1

2𝜋
 
0

1

𝑑𝜆 
0

∞

𝑑𝜔 𝑑𝐫𝑑𝐫′ 𝜒𝜆(𝐫, 𝐫′, 𝑖𝜔) − 𝑛(𝐫)𝛿(𝐫 − 𝐫′) 𝑣(𝐫, 𝐫′)

The XC energy

The coupling constant

The density response function

Coulomb interaction

Dyson equation for the linear response function:

𝜒𝜆 = 𝜒0 + 𝜆𝜒0 𝑣 + 𝑓𝑥𝑐 𝜒𝜆 , 𝑓𝑥𝑐 = 0 → 𝜒𝜆 ≈ 𝜒𝜆
RPA

Explicitly known in terms of KS  (both occupied and virtual) orbitals 
and orbital energies

𝐸𝑐
RPA = 𝐸𝑐

RPA[𝜖𝑖 , 𝜓𝑖]

𝜒𝜆 𝒓, 𝒓′, 𝑡 − 𝑡′ =
𝛿𝑛𝜆(𝒓, 𝑡)/𝛿𝑣𝜆

𝑒𝑥𝑡(𝒓′, 𝑡′)



RPA as a first-principles method

 With the framework of adiabatic-connection fluctuation-dissipation 
(ACFD) theorem, RPA can be formulated as an approximate, but fully 
nonlocal exchange-correlation (XC) energy functional.

Langreth & Perdew, Phys. Rev. B 15, 2884 (1977).
Gunnarsson & Lundqvist, Phys. Rev. B 13, 4274 (1976).

 First application to real molecules.

Furche, Phys. Rev. B 64, 195120 (2001).
Fuchs & Gonze, Phys. Rev. B 65 235109 (2002).
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𝑑𝜔 𝑑𝐫𝑑𝐫′ 𝜒𝜆
RPA(𝐫, 𝐫′, 𝑖𝜔) − 𝑛(𝐫)𝛿(𝐫 − 𝐫′) 𝑣(𝐫, 𝐫′)

The XC energy

The coupling constant

The RPA density response function

Coulomb interaction

 Applications to molecules, solids, surfaces, molecules on surfaces, 
and layered materials (2006-2012).

For a review, see XR, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 47, 7447 (2012)



Sixty-plus years later, the RPA continues to play a significant role in
nuclear physics [66], bosonic field-theory [67], the quark-gluon plasma
[68], many-fermion solvable models [69], and especially in
computational chemistry and materials science. A recent review by Ren
et al [70], to which the interested reader is referred, describes the
impact of the RPA in the theoretical chemistry and materials science
community, cites some thirty articles that indicate the renewed and
widespread interest in the RPA during the period 2001–2011, discusses
how it enables one to derive the 1/r6 interaction between spatially
separated closed shell electron systems, and, shows, in some detail,
how the RPA enables one to go beyond density functional theory in
computing ground state energies.

-- David Pines, emergent behavior in strongly correlated electron
systems, Rep. Prog. Phys. 79, 092501 (2016)

RPA for chemistry and materials science, 
as noted by Pines



Why is RPA interesting for materials science?

• Automatic and seamless inclusion of van der Waals (vdW) 
interactions; non-additive, anisotropic, and many-body 
screening effects are properly accounted for.

• Compatible with exact exchange; exact exchange plus RPA 
correlation makes the self-interaction error insignificant. 

• Different bonding (ionic, covalent, metallic, vdW) types 
are treated on an equal footing.

• Static correlation (partly) captured  =>  Correct dissociation 
of H2; excellent chemical reaction barrier heights



RPA calculations in practice (so far … )

In practical calculations, RPA is most often carried out as a single-point post-SCF 
approach, based on references from a preceding semi-local (or hybrid) 
calculation.

𝐸RPA = Φ0
 𝐻 Φ0 + 𝐸𝑐

RPA[𝜖𝑛, 𝜓𝑛]

Hartree-Fock energy
with (generalized) KS orbitals

RPA correlation energy

𝜖𝑛, 𝜓𝑛: (generalized) Kohn-Sham orbitals and orbital energies

Φ0: Slater determinant formed with occupied 𝜓𝑖

Typical choices for reference: LDA, PBE, TPSS, PBE0, HSE 

Consequently, RPA results show a slight dependence on the starting point,
denoted e.g., by “RPA@PBE”.



RPA description of vdW interactions
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• RPA captures the non-local coupling between spontaneous 
quantum charge fluctuations separated in space.

𝜒0 𝜒0

v

v RPA=
“summation of ring diagrams”

• It can be shown analytically        

Δ𝐸𝑐
RPA
 𝐶6

RPA/𝑅6 for large R∞

𝐶6
𝑅𝑃𝐴=

3

𝜋
 𝑑𝜔𝛼𝐴

𝑅𝑃𝐴(𝑖𝜔)𝛼𝐵
𝑅𝑃𝐴(𝑖𝜔) “Dispersion consistent”

J. Dobson, in “Topics in Condensed Matter Physics”, Ed. M. P. Das (Nova, New York, 1994)

Y. Gao, W. Zhu, and XR, Phys. Rev. B. 101, 035113 (2020).
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Basic formalism behind RPA 

1. Kohn-Sham eigenvalues and eigenfunctions
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2. Independent-particle (Kohn-Sham) response function
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4. RPA correlation energy calculation

3. Basis representation
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Matrix representation of χ0
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( Nonlocal in space!  r is restricted within one unit cell, 
where r’ extends over the entire solids.)

Expanding       in terms of a set of auxiliary basis functions.
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Distinguish {            from the orbital basis set             to expand 
the KS orbitals
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Matrix representation of χ0
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 PCmnnm Suppose

𝜒𝜇𝜈
0 （𝑖𝜔） = 2 

𝑚,𝑛

(𝑓𝑚 − 𝑓𝑛)𝐶𝑚𝑛
𝜇
𝐶𝑚𝑛
𝜈

𝜀𝑚 − 𝜀𝑛 − 𝑖𝜔Then

Fermi Occupation factor



RPA extended to periodic systems

𝜒0(𝐫, 𝐫′, 𝑖𝜔) = 2 
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First-Principles code package

The Fritz Haber Institute ab-initio molecular simulations
(FHI-aims) package

Numeric atom-centered basis functions

)ˆ()()(][ rr lmillmi Yru

Conventional DFT (LDA, GGAs)

 All-electron, full potential
 Periodic and finite systems on 

equal  footing
 Favorable scaling  

(w.r.t system size and CPU cores)

“Beyond-DFT” methods

 Hybrid functionals, MP2, RPA
and rPT2, etc.
 Quasiparticle excitation energies:

G0W0, scGW, MP2, and beyond 

V. Blum et al., Comp. Phys. Comm.
180, 2175 (2009)

X. Ren et al., New J. Phys.
14, 053020 (2012)
X. Ren et al., Phys. Rev. Mater.
5, 013807 (2021)



First-Principles code package

The Fritz Haber Institute ab-initio molecular simulations
(FHI-aims) package

Numeric atom-centered basis functions

)ˆ()()(][ rr lmillmi Yru

Conventional DFT (LDA, GGAs)

 All-electron, full potential
 Periodic and finite systems on 

equal  footing
 Favorable scaling  

(w.r.t system size and CPU cores)

“Beyond-DFT” methods

 Hybrid functionals, MP2, RPA
and rPT2, etc.
 Quasiparticle excitation energies:

G0W0, scGW, MP2, and beyond 

V. Blum et al., Comp. Phys. Comm.
180, 2175 (2009)

X. Ren et al., New J. Phys.
14, 053020 (2012)
X. Ren et al., Phys. Rev. Mater.
5, 013807 (2021)

Numeric atom-centered basis functions

)ˆ()()(][ rr lmillmi YruRPA implementation is also available in

• VASP
• Turbomole
• CP2K
• GPAW



RPA for the S22 test set



RPA applied to the “CO adsorption puzzle”

CO@Cu(111)

LDA/GGA => hollow site
Exp/RPA => on-top siteXR, P. Rinke, and M. Scheffler,

Phys. Rev. B 80, 045402 (2009)

See also L. Schimka et al., Nature Materials 9, 741 (2010). 



The 𝛼 − 𝛾 phase transition of Ce

M. Casadei, XR, P. Rinke, A. Rubio, and M. Scheffler, 
Phys. Rev. Lett. 109, 146402 (2012); Phys. Rev. B 93, 075153 (2016)

“Exact exchange” (EX) is crucial to produce two distinct solutions, 
corresponding to the two phases.  Further adding the RPA correlation is 
necessary to yield the quantitively correct stability of two phases.



Accurately predicting the energy 
difference between different polymorphs

Exp：fcc structure
Theory：hcp structure



∆𝐸 = 𝐸𝑓𝑐𝑐 − 𝐸ℎ𝑐𝑝

PBE, PBE+MBD

RPA+rSE

S. Yang & X. Ren, in preparation

RPA+rSE (renormalized 
singles excitations) method:

X. Ren et al. Phys. Rev. Lett. 
106, 153003 (2011)

Energy difference between fcc and hcp phases 
of Ar crystal



Phase diagram of Ar crystal

S. Yang & X. Ren, in preparation
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RPA for Ar2



The singles correction: A many-body perturbation analysis
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The computation of singles correction

 This term accounts for the fact that the orbitals used in RPA 
calculations are not “optimal”.
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Kohn-Sham orbitals

 Originally derived within the framework of Rayleigh-Schrödinger 
perturbation theory 

XR, A. Tkatchenko, P. Rinke, M. Scheffler, PRL 106,  153003 (2011)

Fock operator



S

RPA+SE for Ar2

XR, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys. Rev. Lett.  106, 153003 (2011).

Singles contributions correct the too strong Pauli repulsion arising 
from the too extended semi-local DFT charge density.



(PT2)

rPT2 = “RPA+SOSEX+rSE”

The concept of renormalized second-order 
perturbation theory (rPT2)

XR, P. Rinke, G.E. Scuseria, M. Scheffler,
Phys Rev. B  88, 035120 (2013).



The performance of rPT2  

Van der Waals Cohesive energy Bond length Barrier heights

rPT2: most balanced approach for atomization energy, van der Waals

interaction, and chemical reaction barrier heights !



RPA + Singles for Solids  

rSE fixed the problem of RPA!
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On-going community-wide activities

• Low-scaling [O 𝑁3 ] RPA algorithm and implementations

-- Georg Kresse (VASP), up to 256 Si atoms
-- Joerg Hutter (CP2K), up to 500 water molecules

• Analytical gradient of RPA energy, allowing for geometry determination

-- Filipp Furche (Turbomole) for molecules
-- Georg Kresse (VASP) for solids 

• Self-consistent RPA within a generalized Kohn-Sham (GKS) framework

-- Weitao Yang, optimizing the orbitals for RPA (similar to the Bruckner theory)
-- Filipp Furche, GKS-RPA, defining a static “RPA Hamiltonian”

A conceptually rigorous and practically useful self-consistency scheme, based on
the variational principle has to be worked out, that yields

-- Self-consistently determined charge densities and dipole moments
-- Ground-state energy and quasi-particle energy levels in a unified framework
-- Improved dielectric, optical, and magnetic properties



How to relax geometries with RPA?

Force: 𝑭𝐼
RPA= −

𝑑𝐸RPA

𝑑𝑹𝐼

= −
𝑑𝐸DFA

𝑑𝑹𝐼
+
𝑑𝐸xc

DFA

𝑑𝑹𝐼
−
𝑑𝐸x

HF

𝑑𝑹𝐼
−
𝑑𝐸c

RPA

𝑑𝑹𝐼

The RPA forces: 

(gradients of the RPA total energy with respect to the atomic displacement):

Already available in FHI-aims

Energy: 𝐸RPA= 𝐸DFA − 𝐸xc
DFA + 𝐸x

HF + 𝐸c
RPA

Need to be evaluated in this work.



Energy hierarchy of different isomers of 
water hexamers

N. Tahir, Z. Tong, H. Shang, J. Li, V. Blum, X. Ren, arXiv:2109.00742.



LibRPA: A stand-alone library for low-scaling 
correlated electronic structure calculations

RI

Cosine transform

FT

Time grid 𝜏

Frequency grid 𝜔

Least-squares
/Minimax Grid

OUT: 𝐸𝑐
𝑅𝑃𝐴 / 𝐸𝑐

(2)

𝜋𝜇𝜈 𝑘, 𝑖𝜔

INPUT： 𝜀𝑛,𝑘 , 𝑓𝑛,𝑘 , 𝜇
k-grid , Density Matrix

INPUT：𝑉𝜇𝜈(𝑅)

INPUT: 𝐶𝑖 0 ,𝑗(𝑅)
𝜇(0)

Our package

𝑂 𝑁2 scaling RPA calculations; interfaced 
with NAO-based DFT code



Perspectives

With the rapid advance of new concepts and algorithms, we hope 
(and believe), RPA can be developed into a viable approach in the 
near future which can

• bridge the conventional DFT and quantum-chemistry methods

• routinely tackle system size of a few hundred atoms

• provide unprecedented accuracy for computational 
materials science 



Review papers

• X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci. 
47, 7447 (2012)

• X. Ren,  Lecture notes in Autumn School on Correlated 
Electrons: Many-Body Methods for Real Materials,
Jülich, 2019. https://cond-mat.de/events/correl19/

https://cond-mat.de/events/correl19/

